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Abstract – Designing and optimizing cost functions and energy landscapes is a problem
encountered in many fields of science and engineering. These landscapes and cost functions can
be embedded and annealed in experimentally controllable spin Hamiltonians. Using an approach
based on group theory and symmetries, we examine the embedding of Boolean logic gates into
the ground-state subspace of such spin systems. We describe parameterized families of diagonal
Hamiltonians and symmetry operations which preserve the ground-state subspace encoding the
truth tables of Boolean formulas. The ground-state embeddings of adder circuits are used to
illustrate how gates are combined and simplified using symmetry. Our work is relevant for
experimental demonstrations of ground-state embeddings found in both classical optimization
as well as adiabatic quantum optimization.

Copyright c© EPLA, 2012

The embedding of energy landscapes into the ground-
state subspace of spin systems is a task commonly
encountered in both classical [1–3] and quantum optimiza-
tion [4–6]. Finding a state in this subspace is equivalent to
a wide variety of NP-complete decision problems and NP-
hard optimization problems [1,2,7–10] which have received
renewed interest in the wake of adiabatic quantum compu-
tation [4,11–15] and its experimental realizations [16–22].
While using quantum resources does not change the intrin-
sic computational complexity of a problem, it is hoped
that quantum annealing offers a polynomial improvement
over classical schemes for some NP-hard problems. Recent
works have focused on embedding cost functions into the
ground-state subspace of spin systems [5,9,11–15,23–29]
and cellular automata [25,30–32]. While the emphasis
and techniques used in previous work varies, many of the
fundamental results overlap.
In this letter, we use symmetries of Boolean functions

to unify and extend various constructions of Hamilto-
nians embedding Boolean functions into their ground-
state subspaces. We perform a systematic analysis of the
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Hamiltonians embedding all two-input, one-output gates
using our group-theoretic approach. We also report our
new family of Hamiltonians embedding the universal logic
gate NAND and present a new XOR Hamiltonian embed-
ding which encompass several previous results [23,24,29].
Both of our constructions have three free parameters
providing previously ignored degrees of freedom which
could be useful when considering experimental constraints.
Extensions of our symmetry arguments to larger Boolean
functions are demonstrated using adder circuits of increas-
ing complexity.
While we focus on embedding circuits into the ground

state, the application of symmetry arguments is quite
general and can be used in the construction of Hamil-
tonians for other embedding problems recently studied in
adiabatic quantum computing such as lattice protein fold-
ing [28,33], adiabatic quantum simulation [34], machine
learning [27], or search engine rankings [26].
Throughout this letter, we use diagonal Hamiltonians

of N spins

H =
∑

i

ciσi+
∑

ij

cijσiσj +
∑

ijk

cijkσiσjσk + . . . (1)

with σ≡ σz defined by σ= |0〉〈0| − |1〉〈1|. Since the eigen-
values of σ are ±1, we identify Boolean variable, x∈ {0, 1},
with (1−σ)/2 instead of σ itself. The subscript of each σ
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indicates which spin the operator acts on. Terms such as
σiσj are understood as the tensor product σi⊗σj .
Limiting the Hamiltonian in eq. (1) to two-spin inter-

actions yields the experimentally relevant [17,19–22]
tunable Ising Hamiltonian which will be our primary
focus. Tunable couplings are experimental realized,
e.g., through mutual capacitance or shared inductance in
super-conducting qubits or, in the case of trapped ions,
couplings between ions are induced using off-resonant
pairs of lasers or manipulation of vibrational normal
modes [19].
The idea of ground-state spin logic is to embed

Boolean functions, f : {0, 1}n→{0, 1}m, into the ground-
state subspace, L(Hf(x)), of spin Hamiltonian
Hf(x)(σi, σj , · · · , σk) acting on the spins σi, σj , . . . , σk.
As an example, consider the universal NAND gate:
x̄∨ ȳ= x∧ y. Here and throughout, for Boolean variables
x and y: x̄ is the negation of variable x; the logical
disjunction (OR), written x∨ y, yields the logical one
if and only if x= 1 or y= 1 or both; and the logical
conjunction (AND), written x∧ y, evaluates to the logical
one if and only if both x= 1 and y= 1. The corresponding
Hamiltonian, Hx̄∨ȳ(σ1, σ2, σ3), should have the following
ground-state subspace:

L(Hx̄∨ȳ) = span{|x〉|y〉|x̄∨ ȳ〉}

= span{|001〉, |011〉, |101〉, |110〉}. (2)

Using the σ matrices, such a Hamiltonian is given in
[25] as1

Hx̄∨ȳ(σ1, σ2, σ3) = 21+(1+σ1+σ2−σ1σ2)σ3. (3)

This construction uses a three-spin interaction which can
be replaced using the same number of spins and only two-
spin interactions. This was done in [23,24] by penalizing
and rewarding certain interactions such that the ground-
state subspace is not altered while the higher energy
eigenstates are.
Now we introduce the first result of our paper: a

three-parameter family of spin Hamiltonians which embed
the NAND gate in the ground state using only two-spin
interactions. This construction generalizes and subsumes
previous gate characterizations found in [23,24,29] and
elsewhere. Using coefficients labeled as in eq. (1), the
constraint that one eigen-subspace is four-fold degenerate
and contains states |001〉, |011〉, |101〉, and |110〉 leads to
the following three equalities:

E001 =E110⇒ c3 = c1+ c2, (4)

E001 =E101⇒ c23 = c12+ c2, (5)

E001 =E110⇒ c13 = c12+ c1. (6)

1More precisely, the Hamiltonian found in [25] was given in binary
variables as ∆(1−xC −xAxB +xAxBxC). Conversion to eq. (3) is
done by inserting (1−σi)/2 for xi and selecting the appropriate
rescaling of ∆.

After enforcing these constraints and utilizing eq. (1), the
energies are

Edegen =E001 =−c1− c2− c12, (7)

E000 = 3(c1+ c2+ c12), (8)

E010 = 3c1− c2− c12, (9)

E100 = 3c2− c1− c12, (10)

E111 = 3c12− c1− c2. (11)

For c1, c2, and c12 greater than zero, the degenerate space
is always the ground state. In closed form, the three-
parameter family of Hamiltonians encoding NAND in the
ground state is

Hx̄∨ȳ(σ1, σ2, σ3) = (c1σ1+ c2σ2)(1+σ3)

+(c1+ c2)σ3+ c12
∑

i<j

σiσj (12)

with c1, c2, c12 > 0. The freedom to select these parameters
could be desirable as it reduces the constraints placed on
an experimental realization.
The ground-state energy of the NAND Hamiltonian, is

−(c1+ c2+ c12) instead of zero. Some authors choose to
consider positive semi-definite Hamiltonians, however the
addition of multiples of the identity does not alter energy
differences within the landscape of the problem and we
choose not to enforce this constraint.
Let us turn to an illustration that shows how to use

the Hamiltonian in eq. (12) to construct more complex
functions. Naively, it may seem a separate spin must be
included for each wire originating from a FANOUT oper-
ation [23–25]. However, this is not the case; instead the
same spin may be used for the input to as many gates as
desired. As an example, in fig. 1, an all-NAND half adder
circuit is converted to a spin Hamiltonian using eq. (12).
We will return to this example at the end of the letter as
an application of our symmetry considerations.
An important consideration for this model is the input

and output of the circuit. To extract data from this
system, single spin projective measurements can be used.
Inputs are set using an additional Hamiltonian

Hin =
1

2

inputs∑

k

(1+(−1)1−xkσk), (13)

which forces the k-th bit to take the value xk ∈ {0, 1}.
There are certain symmetries of Boolean functions from

which we can infer properties of the class of Hamiltonians
that have the Boolean function embedded in the ground-
state subspace. Using group theory to classify Boolean
functions is not new [35,36], however, this is its first
application to spin system ground-state embeddings.
To limit the scope of our initial discussions, we will

restrict our attention to Hamiltonians containing only
two-spin interactions and to the set of the 16 two-input,
one-output gates.
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a) b)

d)c)

Fig. 1: (Color online) Ground-state embedding of the half
adder circuit. (a) The half adder is implemented with a
XOR gate and an AND gate. (b) The XOR and AND gates
have been substituted by the corresponding all-NAND circuits.
(c) The same circuit has been rewritten without the redundant
gates and labeled wires. (d) Here the circuit is mapped to
a network of seven spins, each corresponding to the seven
wires of the circuit. The thickness of each link is proportional
to the two-spin interaction strength, while the size of each
node is proportional to the local field strength in the two-
local reduction. The parameters used for the NAND gate
Hamiltonian given in eq. (12) are c1 = c2 = c12 = 1.

Each of the two-input, one-output gates is defined by
its truth table:

x y z
0 0 b1
0 1 b2
1 0 b3
1 1 b4

with bi ∈ {0, 1}. There are 16 choices for the
vector b= [b1, b2, b3, b4]. The corresponding Hamil-
tonian, Hb, must have ground-state subspace
L(Hb) = {|00b1〉, |01b2〉, |10b3〉, |11b4〉}. Thus, there are 16
relevant ground-state subspaces, each corresponding to
one of the truth tables.
The symmetry operations on truth tables must treat

the output bit differently in order to remain in the space
of the 16 truth tables. Thus, we consider i) bit flips of
any of the spins and ii) swaps of the two inputs giving
the following symmetries: {e, F1, F2, F3, R12}. Here e is the
identity operation, Fi is the spin-flip operation (negate),
and R12 is the spin-swap operator (permute). The action
of the latter two operations on spins is defined via

Fi ◦σj = (1− 2δij)σj , (14)

Rij ◦σk = σjδki+σiδkj +σk(1− δki− δkj). (15)

The group G can be presented as G= 〈R12, F1, F3〉 where
〈·〉 indicates a set of generators. Defining relations of

F1, F2, R12

a)

Hzero HoneF3

F1F2F3

b)

F1

F2

Hȳ Hy

F3

F2

Hx̄

R12

Hx

R12

F3

F1

R
1
2

R
1
2
F

1
F

2
R

1
2

c)

Hx∧y Hx̄∧ȳ

Hx∨ȳHx̄∨y

Hx∧ȳ Hx̄∧y

Hx∨y Hx̄∨ȳ

F1 F2

F2F1F2 F1

F2 F1

F3F3 F3

R12

R12

F3

F1F2, F2F3, F1F3, R12

d)

Hx⊕y Hx==y

F1

F2

F3

Fig. 2: (Color online) The action of D4×Z2 on the 16
Hamiltonians corresponding to truth tables of two-input, one-
output functions. The Hamiltonians can be converted to any
other Hamiltonian in the same orbit by applying the spin-
flip (negate) Fi or input-swap (permute) R12 operations. The
symmetry operations that leave the ground-state subspaces
of each Hamiltonian invariant (the stabilizer subgroup)
is written on the perimeter of each rectangular region. Orbits
(a), (b), (c), (d) are explained separately in the text. Each
of these orbits requires an additional spin for a Hamiltonian
embedding using only two-spin interactions: orbit (a) requires a
single spin, (b) two spins, (c) three spins, and orbit (d) requires
four spins.

the group are R212 = F
2
1 = F

2
3 = e, R12F1 = F2R12, F1F3 =

F3F1 and R12F3 = F3R12. From these relations, or alter-
natively from the cycle graph, the group is of order 16 and
is isomorphic to D4×Z2, where D4 is the symmetry group
of the square and Z2 is the cyclic group of order 2.
The action of G on the set of 16 truth tables is depicted

in fig. 2. Four orbits are found under action of the
group:

{0, 1},

{x, y, x̄, ȳ},

{x∨ y, x̄∨ y, x∨ ȳ, · · · , x̄∧ ȳ},

{x⊕ y, x== y}.

These classes are depicted in fig. 2(a), (b), (c), (d), respec-
tively. These classes correspond to different NPN (negate-
permute-negate) classes [35,36]. Interestingly, each orbit
requires a different number of spins to implement when
considering only two-spin interactions. We examine each
in turn.
First, consider the constant functions with bi = c and

c∈ {0, 1}. Since these functions do not depend on x
nor y, there is no need to couple either to the third
spin. Hence, the Hamiltonian in eq. (13) can be used.
According to the group action depicted in fig. 2(a), given
the Hamiltonian for Hzero corresponding to bi = 0, the
action of F3 transforms Hzero to Hone.
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Second, for each of the functions, bi = x, bi = y, bi = x̄
and bi = ȳ, the output bit only depends on one of the two
inputs. The other input is extraneous, so the gate only
requires two spins to implement. The truth tables can be
embedded using variations of the COPY gate previously
introduced in [23–25]. The general k-COPY gate forces k
bits to take the same value and the corresponding diagonal
operator

Hk-COPY =−
1

2

∑

i�=j

σiσj (16)

acting on k-spins possesses a ground-state subspace
L(Hk-COPY) = span{|0〉

⊗k, |1〉⊗k}. If we are concerned
with constructing a Hamiltonian using a physical set of
spins, the spatial locality could play an important role as
coupling of distant spins may not be possible. In this case,
the k-COPY gate could be useful for spatially distributing
intermediate results of the computation. The action of F1
or F3 transforms Hx =H2-COPY(x,z) into the Hamiltonian
Hx̄, as shown in fig. 2(b).
The third class of functions to be considered is x∨ y,
x∧ y and all possible negations of the two inputs. Our
general formula for x̄∨ ȳ is given in eq. (12) and using the
symmetry operations from group G, see fig. 2(c), all other
gates in this orbit can be derived using three spins with
two-spin interaction terms.
The last orbit of functions contains XOR and EQUIV.

The XOR of inputs x and y, x⊕ y, outputs logical one
only when exactly one of the two inputs is one. The
EQUIV (x== y) outputs logical one only when both
inputs have the same value. Neither of these two functions
can be embedded in the ground-state subspace of a three-
spin system using only two-spin interactions; it requires
a fourth ancilla spin to implement using only pairwise
interactions. If restricted to three spins, the gate XOR(⊕)
requires a three-spin interaction.

Hx⊕y(σ1, σ2, σ3) =−σ1σ2σ3. (17)

The inability to create this operator acting on three
spins with two-spin interactions can be demonstrated
algebraically or graphically using Karnaugh maps [23,29].
For XOR, the stabilizer subgroup is generated by FiFj and
R12, see fig. 2(d). When considering the ancilla spin, σ4,
there is an additional F4 symmetry that leaves the truth
table unchanged.
Beginning with the swap-symmetric operators Mz =∑
i σi and Mzz =

∑
i<j σiσj , we write the most general

swap-symmetric Hamiltonian over four spins restricted to
two-spin interactions as

HR = rzMz + rzzMzz +σ4(r4+ rz4Mz). (18)

Suppose that the coefficient vector R= [rz, rzz, r4, rz4]
gives a valid XOR Hamiltonian. Then we can act with F4 to
get a second Hamiltonian that also preserves the ground-
state subspace with coefficients R′ = [rz, rzz,−r4,−rz4]. In
refs. [23] and [24], this F4 symmetry connects the decom-
positions given as R= [1,−1,−2, 2] and R= [1,−1, 2,−2]

in the respective papers. Furthermore, since the ground-
state subspace is symmetric with respect to FiFj , there
are an additional six Hamiltonians with logically equiv-
alent ground-state subspaces. For example, beginning
with Hx⊕y corresponding to R= [1,−1,−2, 2] and using
symmetry operation F1F2 results in

F1F2 ◦Hx⊕y = 2σ4(−σ1−σ2+σ3)

+σ1+σ2−σ3− 2σ4

+(σ1σ2−σ2σ3−σ1σ3) (19)

with the same ground-state subspace. Note that this
Hamiltonian is not of the same form as eq. (18) like those
given in [23,24].
To extend the XOR Hamiltonians previously listed to

a parameterized family of Hamiltonians, we rearrange
eq. (18) with R= [1,−1,−2, 2] as

Hx⊕y = −(σ1+σ2)(1−σ4)

−2σ4+(σ1σ2+σ1σ4+σ2σ4)

−σ3+σ1σ3+σ2σ3+2σ3σ4. (20)

Comparing with eq. (12) and using fig. 2c, we can
simplify this equation using Hx̄∧ȳ(σ1, σ2, σ4) = F1F2F4 ◦
Hx̄∨ȳ(σ1, σ2, σ4) evaluated at c1 = c2 = c12 = 1. Generaliz-
ing to other values of c1, c2, and c12, we arrive at the follow-
ing three-parameter family that preserves the ground-state
subspace of XOR:

Hx⊕y = Hx̄∧ȳ(σ1, σ2, σ4)−σ3

+σ1σ3+σ2σ3+2σ3σ4. (21)

By examining the excited state structure of eq. (20), we
find that in the parameterization of Hx̄∧ȳ the coefficients,
c1, c2, c12, must be greater than 1/2 instead of strictly
positive.
Our work has direct relevance to recent experimen-

tal realizations of adiabatic quantum annealing in super-
conducting qubits [21,22] and ion traps [16–20]. At the
start of the adiabatic computation, the initial Hamiltonian
is usually chosen as a sum of transverse local magnetic
fields while at the end of the evolution the Hamiltonian
encodes problem instances in its ground state in the Ising
basis. Our results provide a symmetry-based classification
of logically equivalent Hamiltonians as well as providing
unifying formulas for Boolean embeddings.
In table 1, we summarize our results for Hamiltonian

embeddings of two-input, one-output Boolean functions.
While we have restricted attention to diagonal Hamilto-
nians, future work could consider transformations where
the ground state is preserved but the Hamiltonian obtains
off-diagonal elements.
Now we return to the half adder example from fig. 1.

With our constructions, we can directly implement it using
the XOR and AND gates,

HHA =Hx⊕y(σA, σB , σa, σS)+Hx∧y(σA, σB , σC). (22)
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Table 1: Summary of representative Hamiltonians from each
orbit under the action of the symmetry group. Spin one and
two correspond to the two inputs while spin three corresponds
to the output. The fourth spin is an ancilla spin needed only
for the implementation of XOR and EQUIV. In the AND, OR,
. . . , NAND, NOR family, the sign of the coefficients determines
which gate on this NPN orbit one obtains. We have only shown
four Hamiltonians and the remaining 12 Hamiltonians as well
as additional Hamiltonians with different excited states are
related via the action of the groupD4×Z2 as depicted in fig. 2.

z = f(x, y) Hf(x,y)(σ1, σ2, σ3, σ4)
Constant functions
z = 0 Hzero = (1−σ3)
Copy-type functions
z = x Hx = (1−σ1σ3)
AND, OR, . . . , NAND, NOR functions

z = x̄∨ ȳ
Hx̄∨ȳ = (c1σ1+ c2σ2)(1+σ3)

+(c1+ c2)σ3+ c12
∑3
i<j σiσj

XOR and EQUIV functions

z = x⊕ y
Hx⊕y = Hx̄∧ȳ(σ1, σ2, σ4)−σ3

+σ1σ3+σ2σ3+2σ3σ4

Fig. 3: (Color online) The half adder spin Hamiltonian that
arises from the four-spin decomposition of the XOR Hamil-
tonian which simplifies the construction from fig. 1(d). Dashed
links represent negative interactions and checkerboard shad-
ing indicates a negative local field. The size of the nodes and
the thickness of the edges are proportional to the fields and
interaction strength (on spins A and B there is no local field).
The parameters used for the AND gate and XOR gate are
c1 = c2 = c12 = 1.

Here σA and σB correspond to the inputs to be summed,
σa corresponds to the XOR ancilla bit, and σS and σC
correspond to the sum and carry bits. As depicted in
fig. 3, the new spin Hamiltonian uses two less ancilla
spins than our earlier construction. This is important in
computational situations with limited numbers of spins as
is frequently the case in experimental quantum annealing.
A large equivalence class of Hamiltonians arises from the
D4 stabilizer subgroup of the XOR Hamiltonian and the
Z2 stabilizer subgroup of the AND Hamiltonian.
The symmetry group of HHA can be inferred from

the symmetries of the component Hamiltonians using a
direct product structure. For a general circuit Hamiltonian
composed of gate Hamiltonians acting on subsets of spins,
H =

∑
Hi, the stabilizer subgroup is the direct product of

the stabilizers for each of the Hamiltonians in the sum. The
direct product group action is defined as (g1, g2, · · · gN ) ◦

H =
∑
gi ◦Hi. If g is in the intersection of all stabilizer

groups (the diagonal subgroup), then g ◦H will have the
same ground-state subspace as H.
Additional symmetries arise after partitioning the bits

into output and ancilla bits. We can expect the symmetries
of the Boolean function being embedded to be possessed
by the resulting Hamiltonian. However, the symmetry
group composed of the gate-local symmetries preserves
the full ground-state subspace including the values of
the ancilla bits. The symmetries of the Boolean function
before being decomposed into logic gates will arise as
global symmetries that cannot be obtained from the gate-
local symmetries of the individual gates. For instance, if
σa corresponds to an ancilla spin, then inverting this bit in
each circuit component leaves the ground-state subspace
invariant. That is, H and (Fa, Fa, · · · , Fa) ◦H embed the
same Boolean function.
As a further illustration of the distinction between

global and gate-local symmetries, consider the full adder
corresponding to a Boolean function which adds binary
summands A, B, and carry-in bit Cin. The permutation
of the input bits and the carry-in bit is a symmetry of the
full adder Boolean function. However, such a permutation
is not a gate-local symmetry of the sub-Hamiltonians
used in the circuit embedding. This is because the values
of the ancilla spin within the ground-state subspace is
not preserved under this permutation. Thus, the local
symmetries do not determine all possible symmetries when
some bits are considered as ancillas.
As a final example of ground-state spin logic, fig. 4

shows the spin Hamiltonian of the ripple carry adder for
four-bit binary numbers. The figure shows the network for
both an implementation with only NAND gates in fig. 4(a)
and an implementation with XOR, AND, and OR gates
in fig. 4(b). As in fig. 1(b) and (c), the larger gate set
allows a simpler circuit construction which translates to
a spin system with 14 less spins. In general, when adding
n-bit numbers, the constructions differ by 4n− 2 spins.
Both of our constructions include parameters which can
be freely varied without altering the ground-state allowing
for robust implementations. Another salient feature is that
the average number of connections per spins increases from
3.85 in the all-NAND case to 4.22. One may opt for the all-
NAND construction if a major hurdle is multiple couplings.
Explicitly listing the free parameters and the symmetries
that preserve the ground-state subspace is an illustration
of how our approach gives experimentalists and theorists
systematic methods to find additional degrees of freedom
and classify logically equivalent Hamiltonians.
An important step towards large scale experimental

realizations of the techniques presented in this paper
will be the quantum adiabatic implementation and
characterization of the elementary logic gates. In the
case of XOR, this Hamiltonian will allow one to realize
an effective three-spin interaction by using only two-spin
interactions and introducing an ancilla spin. Such an
interesting example is in line with current experimental
capabilities [20–22].
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a) b)

Fig. 4: (Color online) Ripple carry adder. The figure shows the network of spins corresponding to a ripple carry adder with
four bits. The ripple carry adder is composed by one half adder and three full adders; in yellow it shows the input spins from
the four bits binary numbers A=

∑4
i=1Ai2

i and B =
∑4
i=1Bi2

i; while the sum spins, Si are drawn in purple. Carry bits are
labeled as Ci. The direction of the sum is from left to right. Panel (a) shows a ripple carry constructed with only NAND gates
and parameters c1 = c2 = c12 = 1, while (b) shows the same adders built with XOR, AND and OR gates.
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